viernes, 13 de marzo de 2015

base de datos probabilìstica

Una base de datos probabilística es una base de datos en la que los campos tienen asociados valores de probabilidad. Los gestores de bases de datos probabilísticas son un área de investigación muy activa en la actualidad. Si bien aún no hay productos comerciales, existen diversos prototipos.
En las bases de datos probabilísticas se distingue entre el modelo de datos y su representación física, de un modo similar al de una base de datos relacional. En las probabilísticas esta distinción es crucial porque tienen que representar números muy grandes de posibles valores, a veces exponencial
Una base de datos biológica es una biblioteca de información sobre ciencias de la vida, recogida de experimentos científicos, literatura publicada, tecnología de experimentación de alto rendimiento, y análisis computacional.1 Contiene información de áreas de investigación incluyendo genómicaproteómicametabolómica, expresión génica mediante microarrays, y filogenética.2 La información contenida en bases de datos biológicas incluye funciones, estructura y localización (tanto celular como cromosómica) de genes, efectos clínicos de mutaciones, así como similitudes de secuencias y estructuras biológicas.
Para entender las bases de datos biológicas son importantes los conceptos de bases de datos relacionales de las ciencias de la computación, y los conceptos de recuperación de información de las bibliotecas digitales. El diseño de estas bases de datos, su desarrollo y su gestión a largo plazo, forman un área nuclear de la disciplina de labioinformática.3 El contenido de los datos incluye secuencias génicas, descripciones textuales, atributos y clasificaciones ontológicas, anotaciones, y datos en forma tabular. Estos son descritos a menudo como datos semi-estructurados, y se pueden representar como tablas, registros delimitados por claves, y estructuras XML. Son comunes las referencias cruzadas entre bases de datos usando números de acceso (identificadores únicos de registros de secuencias de proteínas o ADN) como claves foráneas.
Las bases de datos biológicas se han convertido en un instrumento importante para ayudar a los científicos a comprender y explicar una serie de fenómenos biológicos desde la estructura biomolecular y su interacción, hasta el metabolismo completo de los organismos y a la comprensión de la evolución de las especies. Este conocimiento ayuda a facilitar la lucha contra las enfermedades, ayuda en el desarrollo de medicamentos, y en el descubrimiento de las relaciones básicas entre las especies en la historia de la vida.
El conocimiento biológico se distribuye entre múltiples bases de datos generales y especializadas. Esto a veces hace que sea difícil garantizar la coherencia de la información. Las bases de datos biológicas tienen referencias cruzadas con otras bases de datos con el número de acceso como una forma de vincular sus conocimientos relacionados con el conjunto.
Un recurso importante para la búsqueda de bases de datos biológicos es un tema anual de la revista Nucleic Acids Research (NAR). Un artículo acerca de las bases de datos en NAR está disponible gratuitamente y se clasifican muchas de las bases de datos en línea a disposición del público relacionadas con la biología y bioinformática.
Uno de los tipos de bases de datos más usuales en bioinformática, son las bases de datos de secuencias. Estas son una gran colección de secuencias de ADNproteínas y otras, que son almacenadas en computadoras. Una base de datos puede incluir secuencias de un sólo organismo, como la base da datos que contiene todas las proteínas de laSaccharomyces cerevisiae, o puede incluir secuencias de todos los organismo cuyo ADN ha sido secuenciado.
Existen bases de datos primarias, que contienen información directa de la secuencia, estructura o patrón de expresión de ADN o proteína, y secundarias que contienen datos e hipótesis derivados del análisis de las bases de datos primarias, como mutaciones, relaciones evolutivas, agrupación por familias o funciones, implicación en enfermedades, etc.

Problemas por los formatos de entrada[editar]
  • EMBL-BANK en el Instituto europeo de Bioinformática (EBI)
  • Enlace externo: EMBL-BANK
  • DNA Data Bank of Japan (DDBJ) en el Centro de Información Biológica (CIB)
  • Enlace externo: DDBJ
  • GenBank en el Centro Nacional de Información Biotecnológica (NCBI)
  • Enlace externo: GenBank Entrez Nucleotide
  • Swiss-Prot contiene secuencias anotadas o comentadas, es decir, cada secuencia ha sido revisada, documentada y enlazada a otras bases de datos.
  • Enlace externo: Swissprot en el EBI, Swissprot en Expasy
  • TrEMBL por Translation of EMBL Nucleotide Sequence Database incluye la traducción de todas las secuencias codificantes derivadas del (EMBL-BANK) y que todavía no han podido ser anotadas en Swiss-Prot.
  • Enlace externo: TrEMBL
  • PIR por Protein Information Resource está dividida en cuatro sub-bases que tienen un nivel de anotación decreciente.
  • Enlace externo: PIR
  • ENZYME enlaza la clasificación de actividades enzimáticas completa a las secuencias de Swiss-Prot.
  • Enlace externo: ENZYME
  • PROSITE contiene información sobre la estructura secundaria de proteínas, familias, dominios, etc.
  • Enlace externo: PROSITE
  • InterPro integra la información de diversas bases de datos de estructura secundaria como PROSITE, proporcionando enlaces a otras bases de datos e información más extensa.
  • Enlace externo: INTERPRO
  • Protein Data Bank (PDB) es la base de datos de estructura terciaria 3-D de proteínas que han sido cristalizadas.
  • Enlace externo: PDB
  • Ensembl integra genomas eucariotas grandes, por el momemto contiene genoma humano, ratón, rata, fugu, zebrafish, mosquito, Drosophila, C. elegans, y C. briggsae.
  • Enlace externo: Ensembl
  • Genomes server y TIGR son portales con información o enlaces de todos los genomas secuenciados por el momento, desde virus a humanos.
  • Enlace externo: Genome Server
  • Enlace externo: TIGR
  • Wormbase es el portal del genoma de gusano C. elegans.
  • Enlace externo: Wormbase
  • Enlace externo: Flybase
Otras[editar]
  • Taxonomy es el portal de clasificación taxonómica de organismos
  • Enlace externo: Taxonomy Browser
  • Pubmed da acceso gratuito al índice de publicaciones de la Biblioteca Nacional de Medicina (NLM), con enlaces a artículos completos
  • Enlace externo: PubMed
  • OMIM por Online Mendelian Inheritance in Man es un catálogo de genes humanos relacionados con informaciones genéticas.
  • Enlace externo: OMIM
  • Xenobase es el portal del organismo modelo Xenopus laevis
  • Enlace externo: Xenbase
  • Enlace externo: Arabidopsis
  • GYPSY, base de datos de elementos genéticos móviles.
  • Enlace externo: The GYPSY Database of Mobile Genetic Elements
  • Orientado a temas.- Los datos en la base de datos están organizados de manera que todos los elementos de datos relativos al mismo evento u objeto del mundo real queden unidos entre sí.
  • Variante en el tiempo.- Los cambios producidos en los datos a lo largo del tiempo quedan registrados para que los informes que se puedan generar reflejen esas variaciones.
  • No volátil.- La información no se modifica ni se elimina, una vez almacenado un dato, éste se convierte en información de sólo lectura, y se mantiene para futuras consultas.
  • Integrado.- La base de datos contiene los datos de todos los sistemas operacionales de la organización, y dichos datos deben ser consistentes.
Definición de Ralph Kimball[editar]
Una definición más amplia de almacén de datos[editar]
Función de un almacén de datos[editar]
  • Integración de los datos provenientes de bases de datos distribuidas por las diferentes unidades de la organización y que con frecuencia tendrán diferentes estructuras (fuentes heterogéneas). Se debe facilitar una descripción global y un análisis comprensivo de toda la organización en el almacén de datos.
  • Separación de los datos usados en operaciones diarias de los datos usados en el almacén de datos para los propósitos de divulgación, de ayuda en la toma de decisiones, para el análisis y para operaciones de control. Ambos tipos de datos no deben coincidir en la misma base de datos, ya que obedecen a objetivos muy distintos y podrían entorpecerse entre sí.
Data marts[editar]
Artículo principal: Data mart
  • Usuarios limitados.
  • Área específica.
  • Tiene un propósito específico.
  • Tiene una función de apoyo.
Cubos de información[editar]
Artículo principal: Cubo OLAP
Dimensiones[editar]
Variables[editar]
Ejemplos[editar]
  • Beneficios
  • Gastos
  • Ventas
  • etc.
  • producto (diferentes tipos o denominaciones de productos)
  • localidades (o provincia, o regiones, o zonas geográficas)
  • tiempo (medido de diferentes maneras, por horas, por días, por meses, por años, ...)
  • tipo de cliente (casado/soltero, joven/adulto/anciano, ...)
  • etc.
Elementos que integran un almacén de datos[editar]
Metadatos[editar]
Artículo principal: Metadato
  • Tablas
  • Columnas de tablas
  • Relaciones entre tablas
  • Jerarquías y Dimensiones de datos
  • Entidades y Relaciones
Funciones ETL (extracción, transformación y carga)[editar]
Artículo principal: Extract, transform and load
  • Extracción. Acción de obtener la información deseada a partir de los datos almacenados en fuentes externas.
  • Transformación. Cualquier operación realizada sobre los datos para que puedan ser cargados en el data warehouse o se puedan migrar de éste a otra base de datos.
  • Carga. Consiste en almacenar los datos en la base de datos final, por ejemplo el almacén de datos objetivo normal.
Middleware[editar]
Artículo principal: Middleware
Diseño de un almacén de datos[editar]
  • Situación actual de partida.- Cualquier solución propuesta de data warehouse debe estar muy orientada por las necesidades del negocio y debe ser compatible con la arquitectura técnica existente y planeada de la compañía.
  • Tipo y características del negocio.- Es indispensable tener el conocimiento exacto sobre el tipo de negocios de la organización y el soporte que representa la información dentro de todo su proceso de toma de decisiones.
  • Entorno técnico.- Se debe incluir tanto el aspecto del hardware (mainframes, servidores, redes,...) así como aplicaciones y herramientas. Se dará énfasis a los Sistemas de soporte a decisiones (DSS), si existen en la actualidad, cómo operan, etc.
  • Expectativas de los usuarios.- Un proyecto de data warehouse no es únicamente un proyecto tecnológico, es una forma de vida de las organizaciones y como tal, tiene que contar con el apoyo de todos los usuarios y su convencimiento sobre su bondad.
  • Etapas de desarrollo.- Con el conocimiento previo, ya se entra en el desarrollo de un modelo conceptual para la construcción del data warehouse.
  • Prototipo.- Un prototipo es un esfuerzo designado a simular tanto como sea posible el producto final que será entregado a los usuarios.
  • Piloto.- El piloto de un data warehouse es el primero, o cada uno de los primeros resultados generados de forma iterativa que se harán para llegar a la construcción del producto final deseado.
  • Prueba del concepto tecnológico.- Es un paso opcional que se puede necesitar para determinar si la arquitectura especificada del data warehouse funcionará finalmente como se espera.
Almacén de datos espacial[editar]
Ventajas e inconvenientes de los almacenes de datos[editar]
Ventajas
  • Los almacenes de datos hacen más fácil el acceso a una gran variedad de datos a los usuarios finales
  • Facilitan el funcionamiento de las aplicaciones de los sistemas de apoyo a la decisión tales como informes de tendencia, por ejemplo: obtener los ítems con la mayoría de las ventas en un área en particular dentro de los últimos dos años; informes de excepción, informes que muestran los resultados reales frente a los objetivos planteados a priori.
  • Los almacenes de datos pueden trabajar en conjunto y, por lo tanto, aumentar el valor operacional de las aplicaciones empresariales, en especial la gestión de relaciones con clientes.
Inconvenientes
  • A lo largo de su vida los almacenes de datos pueden suponer altos costos. El almacén de datos no suele ser estático. Los costos de mantenimiento son elevados.
  • Los almacenes de datos se pueden quedar obsoletos relativamente pronto.
  • A veces, ante una petición de información estos devuelven una información subóptima, que también supone una pérdida para la organización.
  • A menudo existe una delgada línea entre los almacenes de datos y los sistemas operacionales. Hay que determinar qué funcionalidades de estos se pueden aprovechar y cuáles se deben implementar en el data warehouse, resultaría costoso implementar operaciones no necesarias o dejar de implementar alguna que sí vaya a necesitarse.
  1. Selección del conjunto de datos, tanto en lo que se refiere a las variables objetivo (aquellas que se quiere predecir, calcular o inferir), como a las variables independientes (las que sirven para hacer el cálculo o proceso), como posiblemente al muestreo de los registros disponibles.
  1. Análisis de las propiedades de los datos, en especial los histogramas, diagramas de dispersión, presencia de valores atípicos y ausencia de datos (valores nulos).
  1. Transformación del conjunto de datos de entrada, se realizará de diversas formas en función del análisis previo, con el objetivo de prepararlo para aplicar la técnica de minería de datos que mejor se adapte a los datos y al problema, a este paso también se le conoce como preprocesamiento de los datos.
  1. Seleccionar y aplicar la técnica de minería de datos, se construye el modelo predictivo, de clasificación o segmentación.
  1. Extracción de conocimiento, mediante una técnica de minería de datos, se obtiene un modelo de conocimiento, que representa patrones de comportamiento observados en los valores de las variables del problema o relaciones de asociación entre dichas variables. También pueden usarse varias técnicas a la vez para generar distintos modelos, aunque generalmente cada técnica obliga a un preprocesado diferente de los datos.
  1. Interpretación y evaluación de datos, una vez obtenido el modelo, se debe proceder a su validación comprobando que las conclusiones que arroja son válidas y suficientemente satisfactorias. En el caso de haber obtenido varios modelos mediante el uso de distintas técnicas, se deben comparar los modelos en busca de aquel que se ajuste mejor al problema. Si ninguno de los modelos alcanza los resultados esperados, debe alterarse alguno de los pasos anteriores para generar nuevos modelos.
  • Comprensión: del negocio y del problema que se quiere resolver.
  • Determinación, obtención y limpieza: de los datos necesarios.
  • Creación de modelos matemáticos.
  • Validación, comunicación: de los resultados obtenidos.
  • Integración: si procede, de los resultados en un sistema transaccional o similar.
  • Regresión lineal.- Es la más utilizada para formar relaciones entre datos. Rápida y eficaz pero insuficiente en espacios multidimensionales donde puedan relacionarse más de 2 variables.
  • Árboles de decisión.- Un árbol de decisión es un modelo de predicción utilizado en el ámbito de la inteligencia artificial, dada una base de datos se construyen estos diagramas de construcciones lógicas, muy similares a los sistemas de predicción basados en reglas, que sirven para representar y categorizar una serie de condiciones que suceden de forma sucesiva, para la resolución de un problema. Ejemplos:
  • Modelos estadísticos.- Es una expresión simbólica en forma de igualdad o ecuación que se emplea en todos los diseños experimentales y en la regresión para indicar los diferentes factores que modifican la variable de respuesta.
  • Agrupamiento o Clustering.- Es un procedimiento de agrupación de una serie de vectores según criterios habitualmente de distancia; se tratará de disponer los vectores de entrada de forma que estén más cercanos aquellos que tengan características comunes. Ejemplos:
  • Reglas de asociación.- Se utilizan para descubrir hechos que ocurren en común dentro de un determinado conjunto de datos.
  • Algoritmos supervisados (o predictivos): predicen un dato (o un conjunto de ellos) desconocido a priori, a partir de otros conocidos.
  • Algoritmos no supervisados (o del descubrimiento del conocimiento): se descubren patrones y tendencias en los datos.
Análisis de la cesta de la compra[editar]
Patrones de fuga[editar]
Fraudes[editar]
Recursos humanos[editar]
Comportamiento en Internet[editar]
Terrorismo[editar]
Juegos[editar]
Ciencia e Ingeniería[editar]
Genética[editar]
Ingeniería eléctrica[editar]
Análisis de gases[editar]
Minería de datos y otras disciplinas análogas[editar]
De la estadística[editar]
  • Análisis de varianza, mediante el cual se evalúa la existencia de diferencias significativas entre las medias de una o más variables continuas en poblaciones distintas.
  • Regresión: define la relación entre una o más variables y un conjunto de variables predictoras de las primeras.
  • Prueba chi-cuadrado: por medio de la cual se realiza el contraste de la hipótesis de dependencia entre variables.
  • Análisis de agrupamiento o clustering: permite la clasificación de una población de individuos caracterizados por múltiples atributos (binarios, cualitativos o cuantitativos) en un número determinado de grupos, con base en las semejanzas o diferencias de los individuos.
  • Análisis discriminante: permite la clasificación de individuos en grupos que previamente se han establecido, permite encontrar la regla de clasificación de los elementos de estos grupos, y por tanto una mejor identificación de cuáles son las variables que definan la pertenencia al grupo.
  • Series de tiempo: permite el estudio de la evolución de una variable a través del tiempo para poder realizar predicciones, a partir de ese conocimiento y bajo el supuesto de que no van a producirse cambios estructurales.
De la informática[editar]
  • Algoritmos genéticos: Son métodos numéricos de optimización, en los que aquella variable o variables que se pretenden optimizar junto con las variables de estudio constituyen un segmento de información. Aquellas configuraciones de las variables de análisis que obtengan mejores valores para la variable de respuesta, corresponderán a segmentos con mayor capacidad reproductiva. A través de la reproducción, los mejores segmentos perduran y su proporción crece de generación en generación. Se puede además introducir elementos aleatorios para la modificación de las variables (mutaciones). Al cabo de cierto número de iteraciones, la población estará constituida por buenas soluciones al problema de optimización, pues las malas soluciones han ido descartándose, iteración tras iteración.
  • Inteligencia Artificial: Mediante un sistema informático que simula un sistema inteligente, se procede al análisis de los datos disponibles. Entre los sistemas de Inteligencia Artificial se encuadrarían los Sistemas Expertos y las Redes Neuronales.
  • Sistemas Expertos: Son sistemas que han sido creados a partir de reglas prácticas extraídas del conocimiento de expertos. Principalmente a base de inferencias o de causa-efecto.
  • Sistemas Inteligentes: Son similares a los sistemas expertos, pero con mayor ventaja ante nuevas situaciones desconocidas para el experto.
  • Redes neuronales: Genéricamente, son métodos de proceso numérico en paralelo, en el que las variables interactúan mediante transformaciones lineales o no lineales, hasta obtener unas salidas. Estas salidas se contrastan con los que tenían que haber salido, basándose en unos datos de prueba, dando lugar a un proceso de retroalimentación mediante el cual la red se reconfigura, hasta obtener un modelo adecuado.
Minería de datos basada en teoría de la información[editar]
Tendencias[editar]
  • La importancia que han cobrado los datos no estructurados (texto, páginas de Internet, etc.).
  • La necesidad de integrar los algoritmos y resultados obtenidos en sistemas operacionales, portales de Internet, etc.
  • La exigencia de que los procesos funcionen prácticamente en línea (por ejemplo, en casos de fraude con una tarjeta de crédito).
  • Los tiempos de respuesta. El gran volumen de datos que hay que procesar en muchos casos para obtener un modelo válido es un inconveniente; esto implica grandes cantidades de tiempo de proceso y hay problemas que requieren una respuesta en tiempo real.

Un problema fundamental en todas las grandes bases de datos genómicas es que los registros provienen de una gran variedad de fuentes, desde investigadores individuales hasta grandes centros de secuenciamiento. Como resultado, las secuencias mismas y principalmente las anotaciones biológicas adjuntas a estas secuencias, varían notablemente en calidad. También hay mucha redundancia ya que muchos laboratorios ingresan a menudo secuencias que son idénticas o muy similares a otras en la base de datos.
Muchas anotaciones no están basadas en experimentos de laboratorio sino en resultados de búsquedas de secuencias similares de secuencias previamente anotadas. Por supuesto, una vez que una secuencia es anotada basándose en su similitud con otra, puede servir como base para futuras anotaciones. Esto conduce al problema de las anotaciones transitivas, porque puede haber varias de esas secuencias transferidas por similitud de secuencia entre una base de datos de registro real y la información experimental de laboratorio. Por lo tanto, siempre hay observar el sentido biológico de las anotaciones en las principales bases de datos de secuencias con un considerable grado de escepticismo, a menos que pueda ser verificada por referencias a artículos publicados con la descripción de la alta calidad de los datos experimentales, o al menos por referencia a una secuencia de la base de datos arreglada por un humano.
La colaboración de las tres bases de datos más importantes hace posible acceder a casi toda la información de secuencias de ADN desde cualquiera de sus tres sedes:
Si bien son mantenidas por distintos organismos en distintos países, existe una coordinación entre las distintas bases. Una secuencia enviada a cualquiera de las bases se verá reflejada en las otras dos en aproximadamente una semana, ya que esa es la frecuencia de actualización entre las distintas bases genéticas. Por este motivo es indistinto que base se use para enviar nuevas secuencias, aunque normalmente los europeos utilizan EMBL-BANK y los americanos GenBank.
Bases de datos de secuencias de aminoácidos.
En el contexto de la informática, un almacén de datos (del inglés data warehouse) es una colección de datosorientada a un determinado ámbito (empresa, organización, etc.), integrado, no volátil y variable en el tiempo, que ayuda a la toma de decisiones en la entidad en la que se utiliza. Se trata, sobre todo, de un expediente completo de una organización, más allá de la información transaccional y operacional, almacenado en una base de datos diseñada para favorecer el análisis y la divulgación eficiente de datos (especialmente OLAPprocesamiento analítico en línea). El almacenamiento de los datos no debe usarse con datos de uso actual. Los almacenes de datos contienen a menudo grandes cantidades de información que se subdividen a veces en unidades lógicas más pequeñas dependiendo del subsistema de la entidad del que procedan o para el que sean necesario.

Bill Inmon1 fue uno de los primeros autores en escribir sobre el tema de los almacenes de datos, define un data warehouse (almacén de datos) en términos de las características del repositorio de datos:
Inmon defiende una metodología descendente (top-down) a la hora de diseñar un almacén de datos, ya que de esta forma se considerarán mejor todos los datos corporativos. En esta metodología los Data marts se crearán después de haber terminado el data warehouse completo de la organización.
Ralph Kimball2 es otro conocido autor en el tema de los data warehouse, define un almacén de datos como: "una copia de las transacciones de datos específicamente estructurada para la consulta y el análisis"[cita requerida]. También fue Kimball quien determinó que un data warehouse no era más que: "la unión de todos los Data martsde una entidad"[cita requerida]. Defiende por tanto una metodología ascendente (bottom-up) a la hora de diseñar un almacén de datos.
Las definiciones anteriores se centran en los datos en sí mismos. Sin embargo, los medios para obtener esos datos, para extraerlos, transformarlos y cargarlos, las técnicas para analizarlos y generar información, así como las diferentes formas para realizar la gestión de datos son componentes esenciales de un almacén de datos. Muchas referencias a un almacén de datos utilizan esta definición más amplia. Por lo tanto, en esta definición se incluyen herramientas para extraer, transformar y cargar datos, herramientas para el análisis (inteligencia empresarial) y herramientas para gestionar y recuperar los metadatos.
En un almacén de datos lo que se quiere es contener datos que son necesarios o útiles para una organización, es decir, que se utiliza como un repositorio de datos para posteriormente transformarlos en información útil para el usuario. Un almacén de datos debe entregar la información correcta a la gente indicada en el momento óptimo y en el formato adecuado. El almacén de datos da respuesta a las necesidades de usuarios expertos, utilizando Sistemas de Soporte a Decisiones (DSS), Sistemas de información ejecutiva (EIS) o herramientas para hacer consultas o informes. Los usuarios finales pueden hacer fácilmente consultas sobre sus almacenes de datos sin tocar o afectar la operación del sistema.
En el funcionamiento de un almacén de datos son muy importantes las siguientes ideas:
Periódicamente, se importan datos al almacén de datos de los distintos sistemas de planeamiento de recursos de la entidad (ERP) y de otros sistemas de software relacionados con el negocio para la transformación posterior. Es práctica común normalizar los datos antes de combinarlos en el almacén de datos mediante herramientas de extracción, transformación y carga (ETL). Estas herramientas leen los datos primarios (a menudo bases de datos OLTP de un negocio), realizan el proceso de transformación al almacén de datos (filtración, adaptación, cambios de formato, etc.) y escriben en el almacén.
Los Data marts son subconjuntos de datos de un data warehouse para áreas específicas.
Entre las características de un data mart destacan:
Los cubos de información o cubos OLAP funcionan como los cubos de rompecabezas en los juegos, en el juego se trata de armar los colores y en el data warehouse se trata de organizar los datos por tablas o relaciones; los primeros (el juego) tienen 3 dimensiones, los cubos OLAP tienen un número indefinido de dimensiones, razón por la cual también reciben el nombre de hipercubos. Un cubo OLAP contendrá datos de una determinada variable que se desea analizar, proporcionando una vista lógica de los datos provistos por el sistema de información hacia el data warehouse, esta vista estará dispuesta según unas dimensiones y podrá contener información calculada. El análisis de los datos está basado en las dimensiones del hipercubo, por lo tanto, se trata de un análisis multidimensional.
A la información de un cubo puede acceder el ejecutivo mediante "tablas dinámicas" en una hoja de cálculo o a través de programas personalizados. Las tablas dinámicas le permiten manipular las vistas (cruces, filtrados, organización, totales) de la información con mucha facilidad. Las diferentes operaciones que se pueden realizar con cubos de información se producen con mucha rapidez. Llevando estos conceptos a un data warehouse, éste es una colección de datos que está formada por «dimensiones» y «variables», entendiendo como dimensiones a aquellos elementos que participan en el análisis y variables a los valores que se desean analizar.
Las dimensiones de un cubo son atributos relativos a las variables, son las perspectivas de análisis de las variables (forman parte de la tabla de dimensiones). Son catálogos de información complementaria necesaria para la presentación de los datos a los usuarios, como por ejemplo: descripciones, nombres, zonas, rangos de tiempo, etc. Es decir, la información general complementaria a cada uno de los registros de la tabla de hechos.
También llamadas “indicadores de gestión”, son los datos que están siendo analizados. Forman parte de la tabla de hechos. Más formalmente, las variables representan algún aspecto cuantificable o medible de los objetos o eventos a analizar. Normalmente, las variables son representadas por valores detallados y numéricos para cada instancia del objeto o evento medido. En forma contraria, las dimensiones son atributos relativos a las variables, y son utilizadas para indexar, ordenar, agrupar o abreviar los valores de las mismas. Las dimensiones poseen una granularidad menor, tomando como valores un conjunto de elementos menor que el de las variables; ejemplos de dimensiones podrían ser: “productos”, “localidades” (o zonas), “el tiempo” (medido en días, horas, semanas, etc.), ...
Ejemplos de variables podrían ser:
Ejemplos de dimensiones podrían ser:
Según lo anterior, podríamos construir un cubo de información sobre el índice de ventas (variable a estudiar) en función del producto vendido, la provincia, el mes del año y si el cliente está casado o soltero (dimensiones). Tendríamos un cubo de 4 dimensiones.
Uno de los componentes más importantes de la arquitectura de un almacén de datos son los metadatos. Se define comúnmente como "datos acerca de los datos", en el sentido de que se trata de datos que describen cuál es la estructura de los datos que se van a almacenar y cómo se relacionan.
El metadato documenta, entre otras cosas, qué tablas existen en una base de datos, qué columnas posee cada una de las tablas y qué tipo de datos se pueden almacenar. Los datos son de interés para el usuario final, el metadato es de interés para los programas que tienen que manejar estos datos. Sin embargo, el rol que cumple el metadato en un entorno de almacén de datos es muy diferente al rol que cumple en los ambientes operacionales. En el ámbito de los data warehouse el metadato juega un papel fundamental, su función consiste en recoger todas las definiciones de la organización y el concepto de los datos en el almacén de datos, debe contener toda la información concerniente a:
Los procesos de extracción, transformación y carga (ETL) son importantes ya que son la forma en que los datos se guardan en un almacén de datos (o en cualquier base de datos). Implican las siguientes operaciones:
Middleware es un término genérico que se utiliza para referirse a todo tipo de software de conectividad que ofrece servicios u operaciones que hacen posible el funcionamiento de aplicaciones distribuidas sobre plataformas heterogéneas. Estos servicios funcionan como una capa de abstracción de software distribuida, que se sitúa entre las capas de aplicaciones y las capas inferiores (sistema operativo y red). El middleware puede verse como una capa API, que sirve como base a los programadores para que puedan desarrollar aplicaciones que trabajen en diferentes entornos sin preocuparse de los protocolos de red y comunicaciones en que se ejecutarán. De esta manera se ofrece una mejor relación costo/rendimiento que pasa por el desarrollo de aplicaciones más complejas, en menos tiempo.
La función del middleware en el contexto de los data warehouse es la de asegurar la conectividad entre todos los componentes de la arquitectura de un almacén de datos.
Para construir un Data Warehouse se necesitan herramientas para ayudar a la migración y a la transformación de los datos hacia el almacén. Una vez construido, se requieren medios para manejar grandes volúmenes de información. Se diseña su arquitectura dependiendo de la estructura interna de los datos del almacén y especialmente del tipo de consultas a realizar. Con este criterio los datos deben ser repartidos entre numerosos data marts. Para abordar un proyecto de data warehouse es necesario hacer un estudio de algunos temas generales de la organización o empresa, los cuales se describen a continuación:
Almacén de datos espacial es una colección de datos orientados al tema, integrados, no volátiles, variantes en el tiempo y que añaden la geografía de los datos, para la toma de decisiones. Sin embargo la componente geográfica no es un dato agregado, sino que es una dimensión o variable en la tecnología de la información, de tal manera que permita modelar todo el negocio como un ente holístico, y que a través de herramientas de procesamiento analítico en línea (OLAP), no solamente se posea un alto desempeño en consultas multidimensionales sino que adicionalmente se puedan visualizar espacialmente los resultados.
El almacén de datos espacial forma parte de un extensivo Sistema de Información Geográfica para la toma de decisiones, éste al igual que los SIG, permiten que un gran número de usuarios accedan a información integrada, a diferencia de un simple almacén de datos que está orientado al tema, el Data warehouse espacial adicionalmente es Geo-Relacional, es decir que en estructuras relacionales combina e integra los datos espaciales con los datos descriptivos. Actualmente es geo-objetos, esto es que los elementos geográficos se manifiestan como objetos con todas sus propiedades y comportamientos, y que adicionalmente están almacenados en una única base de datos Objeto-Relacional.
Los Data Warehouse Espaciales son aplicaciones basadas en un alto desempeño de las bases de datos, que utilizan arquitecturas Cliente-Servidor para integrar diversos datos en tiempo real. Mientras los almacenes de datos trabajan con muchos tipos y dimensiones de datos, muchos de los cuales no referencian ubicación espacial, a pesar de poseerla intrínsecamente, y sabiendo que un 80% de los datos poseen representación y ubicación en el espacio, en los Data warehouse espaciales, la variable geográfica desempeña un papel importante en la base de información para la construcción del análisis, y de igual manera que para un Data warehouse, la variable tiempo es imprescindible en los análisis, para los Data warehouse espaciales la variable geográfica debe ser almacenada directamente en ella.
Hay muchas ventajas por las que es recomendable usar un almacén de datos. Algunas de ellas son:
Utilizar almacenes de datos también plantea algunos inconvenientes, algunos de ellos son:
La minería de datos o exploración de datos (es la etapa de análisis de "Knowledge Discovery in Databases" o KDD) es un campo de las ciencias de la computación referido al proceso que intenta descubrir patrones en grandes volúmenes de conjuntos de datos.1 Utiliza los métodos de la inteligencia artificialaprendizaje automáticoestadística y sistemas de bases de datos. El objetivo general del proceso de minería de datos consiste en extraer información de un conjunto de datos y transformarla en una estructura comprensible para su uso posterior. Además de la etapa de análisis en bruto, que involucra aspectos de bases de datos y de gestión de datos, de procesamiento de datos, del modelo y de las consideraciones de inferencia, de métricas de Intereses, de consideraciones de la Teoría de la complejidad computacional, de post-procesamiento de las estructuras descubiertas, de la visualización y de la actualización en línea.
El término es una palabra de moda, y es frecuentemente mal utilizado para referirse a cualquier forma de datos a gran escala o procesamiento de la información (recolección, extracción, almacenamiento, análisis y estadísticas), pero también se ha generalizado a cualquier tipo de sistema de apoyo informático decisión, incluyendo la inteligencia artificial, aprendizaje automático y la inteligencia empresarial. En el uso de la palabra, el término clave es el descubrimiento, comúnmente se define como "la detección de algo nuevo". Incluso el popular libro "La minería de datos: sistema de prácticas herramientas de aprendizaje y técnicas con Java" (que cubre todo el material de aprendizaje automático) originalmente iba a ser llamado simplemente "la máquina de aprendizaje práctico", y el término "minería de datos" se añadió por razones de marketing. A menudo, los términos más generales "(gran escala) el análisis de datos", o "análisis" -. o cuando se refiere a los métodos actuales, la inteligencia artificial y aprendizaje automático, son más apropiados.
La tarea de minería de datos real es el análisis automático o semi-automático de grandes cantidades de datos para extraer patrones interesantes hasta ahora desconocidos, como los grupos de registros de datos (análisis clúster), registros poco usuales (la detección de anomalías) y dependencias (minería por reglas de asociación). Esto generalmente implica el uso de técnicas de bases de datos como los índices espaciales. Estos patrones pueden entonces ser vistos como una especie de resumen de los datos de entrada, y pueden ser utilizados en el análisis adicional o, por ejemplo, en la máquina de aprendizaje y análisis predictivo. Por ejemplo, el paso de minería de datos podría identificar varios grupos en los datos, que luego pueden ser utilizados para obtener resultados más precisos de predicción por un sistema de soporte de decisiones. Ni la recolección de datos, preparación de datos, ni la interpretación de los resultados y la información son parte de la etapa de minería de datos, pero que pertenecen a todo el proceso KDD como pasos adicionales.
Los términos relacionados con la obtención de datos, la pesca de datos y espionaje de los datos se refieren a la utilización de métodos de minería de datos a las partes de la muestra de un conjunto de datos de población más grandes establecidas que son (o pueden ser) demasiado pequeñas para las inferencias estadísticas fiables que se hizo acerca de la validez de cualquier patrón descubierto. Estos métodos pueden, sin embargo, ser utilizados en la creación de nuevas hipótesis que se prueban contra poblaciones de datos más grandes.
Un proceso típico de minería de datos consta de los siguientes pasos generales:
Si el modelo final no superara esta evaluación el proceso se podría repetir desde el principio o, si el experto lo considera oportuno, a partir de cualquiera de los pasos anteriores. Esta retroalimentación se podrá repetir cuantas veces se considere necesario hasta obtener un modelo válido.
Una vez validado el modelo, si resulta ser aceptable (proporciona salidas adecuadas y/o con márgenes de error admisibles) éste ya está listo para su explotación. Los modelos obtenidos por técnicas de minería de datos se aplican incorporándolos en los sistemas de análisis de información de las organizaciones, e incluso, en los sistemas transaccionales. En este sentido cabe destacar los esfuerzos del Data Mining Group, que está estandarizando el lenguaje PMML (Predictive Model Markup Language), de manera que los modelos de minería de datos sean interoperables en distintas plataformas, con independencia del sistema con el que han sido construidos. Los principales fabricantes de sistemas de bases de datos y programas de análisis de la información hacen uso de este estándar.
Tradicionalmente, las técnicas de minería de datos se aplicaban sobre información contenida en almacenes de datos. De hecho, muchas grandes empresas e instituciones han creado y alimentan bases de datos especialmente diseñadas para proyectos de minería de datos en las que centralizan información potencialmente útil de todas sus áreas de negocio. No obstante, actualmente está cobrando una importancia cada vez mayor la minería de datos desestructurados como información contenida en ficheros de texto, en Internet, etc.
Un proyecto de minería de datos tiene varias fases necesarias que son, esencialmente:
La relación entre todas estas fases sólo es lineal sobre el papel. En realidad, es mucho más compleja y esconde toda una jerarquía de subfases. A través de la experiencia acumulada en proyectos de minería de datos se han ido desarrollando metodologías que permiten gestionar esta complejidad de una manera más o menos uniforme.
Como ya se ha comentado, las técnicas de la minería de datos provienen de la inteligencia artificial y de la estadística, dichas técnicas, no son más que algoritmos, más o menos sofisticados que se aplican sobre un conjunto de datos para obtener unos resultados.
Las técnicas más representativas son:
Según el objetivo del análisis de los datos, los algoritmos utilizados se clasifican en supervisados y no supervisados (Weiss y Indurkhya, 1998):
La minería de datos puede contribuir significativamente en las aplicaciones de administración empresarial basada en la relación con el cliente. En lugar de contactar con el cliente de forma indiscriminada a través de un centro de llamadas o enviando e-mails, sólo se contactará con aquellos que se perciba que tienen una mayor probabilidad de responder positivamente a una determinada oferta o promoción.
Por lo general, las empresas que emplean minería de datos ven rápidamente el retorno de la inversión, pero también reconocen que el número de modelos predictivos desarrollados puede crecer muy rápidamente.
En lugar de crear modelos para predecir qué clientes pueden cambiar, la empresa podría construir modelos separados para cada región y/o para cada tipo de cliente. También puede querer determinar qué clientes van a ser rentables durante una ventana de tiempo (una quincena, un mes, ...) y sólo enviar las ofertas a las personas que es probable que sean rentables. Para mantener esta cantidad de modelos, es necesario gestionar las versiones de cada modelo y pasar a una minería de datos lo más automatizada posible.
El ejemplo clásico de aplicación de la minería de datos tiene que ver con la detección de hábitos de compra en supermercados. Un estudio muy citado detectó que los viernes había una cantidad inusualmente elevada de clientes que adquirían a la vez pañales y cerveza. Se detectó que se debía a que dicho día solían acudir al supermercado padres jóvenes cuya perspectiva para el fin de semana consistía en quedarse en casa cuidando de su hijo y viendo la televisión con una cerveza en la mano. El supermercado pudo incrementar sus ventas de cerveza colocándolas próximas a los pañales para fomentar las ventas compulsivas.
Un ejemplo más habitual es el de la detección de patrones de fuga. En muchas industrias —como la banca, las telecomunicaciones, etc.— existe un comprensible interés en detectar cuanto antes aquellos clientes que puedan estar pensando en rescindir sus contratos para, posiblemente, pasarse a la competencia. A estos clientes —y en función de su valor— se les podrían hacer ofertas personalizadas, ofrecer promociones especiales, etc., con el objetivo último de retenerlos. La minería de datos ayuda a determinar qué clientes son los más proclives a darse de baja estudiando sus patrones de comportamiento y comparándolos con muestras de clientes que, efectivamente, se dieron de baja en el pasado.
Un caso análogo es el de la detección de transacciones de lavado de dinero o de fraude en el uso de tarjetas de crédito o de servicios de telefonía móvil e, incluso, en la relación de los contribuyentes con el fisco. Generalmente, estas operaciones fraudulentas o ilegales suelen seguir patrones característicos que permiten, con cierto grado de probabilidad, distinguirlas de las legítimas y desarrollar así mecanismos para tomar medidas rápidas frente a ellas.
La minería de datos también puede ser útil para los departamentos de recursos humanos en la identificación de las características de sus empleados de mayor éxito. La información obtenida puede ayudar a la contratación de personal, centrándose en los esfuerzos de sus empleados y los resultados obtenidos por éstos. Además, la ayuda ofrecida por las aplicaciones para Dirección estratégica en una empresa se traducen en la obtención de ventajas a nivel corporativo, tales como mejorar el margen de beneficios o compartir objetivos; y en la mejora de las decisiones operativas, tales como desarrollo de planes de producción o gestión de mano de obra.
También es un área en boga el del análisis del comportamiento de los visitantes —sobre todo, cuando son clientes potenciales— en una página de Internet. O la utilización de la información —obtenida por medios más o menos legítimos— sobre ellos para ofrecerles propaganda adaptada específicamente a su perfil. O para, una vez que adquieren un determinado producto, saber inmediatamente qué otro ofrecerle teniendo en cuenta la información histórica disponible acerca de los clientes que han comprado el primero.
La minería de datos ha sido citada como el método por el cual la unidad Able Danger del Ejército de los EE. UU. había identificado al líder de los atentados del 11 de septiembre de 2001Mohammed Atta, y a otros tres secuestradores del "11-S" como posibles miembros de una célula de Al Qaeda que operan en los EE. UU. más de un año antes del ataque. Se ha sugerido que tanto la Agencia Central de Inteligencia y su homóloga canadiense, Servicio de Inteligencia y Seguridad Canadiense, también han empleado este método.2
Desde comienzos de la década de 1960, con la disponibilidad de oráculos para determinados juegos combinacionales, también llamados finales de juego de tablero (por ejemplo, para las tres en raya o en finales de ajedrez) con cualquier configuración de inicio, se ha abierto una nueva área en la minería de datos que consiste en la extracción de estrategias utilizadas por personas para estos oráculos. Los planteamientos actuales sobre reconocimiento de patrones, no parecen poder aplicarse con éxito al funcionamiento de estos oráculos. En su lugar, la producción de patrones perspicaces se basa en una amplia experimentación con bases de datos sobre esos finales de juego, combinado con un estudio intensivo de los propios finales de juego en problemas bien diseñados y con conocimiento de la técnica (datos previos sobre el final del juego). Ejemplos notables de investigadores que trabajan en este campo son Berlekamp en el juego de puntos-y-cajas (o Timbiriche) y John Nunn en finales de ajedrez.
En los últimos años la minería de datos se está utilizando ampliamente en diversas áreas relacionadas con la ciencia y la ingeniería. Algunos ejemplos de aplicación en estos campos son:
En el estudio de la genética humana, el objetivo principal es entender la relación cartográfica entre las partes y la variación individual en las secuencias del ADN humano y la variabilidad en la susceptibilidad a las enfermedades. En términos más llanos, se trata de saber cómo los cambios en la secuencia de ADN de un individuo afectan al riesgo de desarrollar enfermedades comunes (como por ejemplo el cáncer). Esto es muy importante para ayudar a mejorar el diagnóstico, prevención y tratamiento de las enfermedades. La técnica de minería de datos que se utiliza para realizar esta tarea se conoce como "reducción de dimensionalidad multifactorial".3
En el ámbito de la ingeniería eléctrica, las técnicas de minería de datos han sido ampliamente utilizadas para monitorizar las condiciones de las instalaciones de alta tensión. La finalidad de esta monitorización es obtener información valiosa sobre el estado del aislamiento de los equipos. Para la vigilancia de las vibraciones o el análisis de los cambios de carga en transformadores se utilizan ciertas técnicas para agrupación de datos (clustering) tales como los mapas auto-organizativos (SOM: Self-organizing map). Estos mapas sirven para detectar condiciones anormales y para estimar la naturaleza de dichas anomalías.4
También se han aplicado técnicas de minería de datos para el análisis de gases disueltos (DGA: Dissolved gas analysis) en transformadores eléctricos. El análisis de gases disueltos se conoce desde hace mucho tiempo como la herramienta para diagnosticar transformadores. Los mapas auto-organizativos (SOM) se utilizan para analizar datos y determinar tendencias que podrían pasarse por alto utilizando las técnicas clásicas (DGA).
Suscita cierta polémica el definir las fronteras existentes entre la minería de datos y las disciplinas análogas, como pueden serlo la estadística, la inteligencia artificial, etc. Hay quienes sostienen que la minería de datos no es sino estadística envuelta en una jerga de negocios que la conviertan en un producto vendible. Otros, en cambio, encuentran en ella una serie de problemas y métodos específicos que la hacen distinta de otras disciplinas.
El hecho es que, en la práctica la totalidad de los modelos y algoritmos de uso general en minería de datos —redes neuronales, árboles de regresión y clasificación, modelos logísticos, análisis de componentes principales, etc.— gozan de una tradición relativamente larga en otros campos.
Ciertamente, la minería de datos bebe de la estadística, de la que toma las siguientes técnicas:
De la informática toma las siguientes técnicas:
Todas las herramientas tradicionales de minería de datos asumen que los datos que usarán para construir los modelos contienen la información necesaria para lograr el propósito buscado: obtener suficiente conocimiento que pueda ser aplicado al negocio (o problema) para obtener un beneficio (o solución).
El inconveniente es que ésto no es necesariamente cierto. Además, existe otro problema mayor aún. Una vez construido el modelo no es posible conocer si el mismo ha capturado toda la información disponible en los datos. Por esta razón la práctica común es realizar varios modelos con distintos parámetros para ver si alguno logra mejores resultados.
Un enfoque relativamente nuevo al análisis de datos soluciona estos problemas haciendo que la práctica de la minería de datos se parezca más a una ciencia que a un arte.
En 1948 Claude Shannon publicó un trabajo llamado “Una teoría matemática de la comunicación”. Posteriormente ésta pasó a llamarse Teoría de la información y sentó las bases de la comunicación y la codificación de la información. Shannon propuso una manera de medir la cantidad de información a ser expresada en bits.
En 1999 Dorian Pyle publicó un libro llamado “Data Preparation for Data Mining” en el que propone una manera de usar la Teoría de la Información para analizar datos. En este nuevo enfoque, una base de datos es un canal que transmite información. Por un lado está el mundo real que captura datos generados por el negocio. Por el otro están todas las situaciones y problemas importantes del negocio. Y la información fluye desde el mundo real y a través de los datos, hasta la problemática del negocio.
Con esta perspectiva y usando la Teoría de la información, es posible medir la cantidad de información disponible en los datos y qué porción de la misma podrá utilizarse para resolver la problemática del negocio. Como un ejemplo práctico, podría encontrarse que los datos contienen un 65% de la información necesaria para predecir qué cliente rescindirán sus contratos. De esta manera, si el modelo final es capaz de hacer predicciones con un 60% de acierto, se puede asegurar que la herramienta que generó el modelo hizo un buen trabajo capturando la información disponible. Ahora, si el modelo hubiese tenido un porcentaje de aciertos de sólo el 10%, por ejemplo, entonces intentar otros modelos o incluso con otras herramientas podría valer la pena.
La capacidad de medir información contenida en los datos tiene otras ventajas importantes.
Al analizar los datos desde esta nueva perspectiva se genera un mapa de información que hace innecesario la preparación previa de los datos, una tarea absolutamente imprescindible si se desea buenos resultados, pero que lleva enorme cantidad de tiempo.
Es posible seleccionar un grupo de variables óptimo que contenga la información necesaria para realizar un modelo de predicción.
Una vez que las variables son procesadas con el fin de crear el mapa de información y luego seleccionadas aquellas que aportan la mayor información, la elección de la herramienta que se usará para crear el modelo deja de tener importancia, ya que el mayor trabajo fue realizado en los pasos previos.
La Minería de Datos ha sufrido transformaciones en los últimos años de acuerdo con cambios tecnológicos, de estrategias de marketing, la extensión de los modelos de compra en línea, etc. Los más importantes de ellos son:









No hay comentarios:

Publicar un comentario